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Supplementary Material for Adaptive Exploration:
What You See Is Up to You

(Chapter 7 of Taming Uncertainty)

Dirk U. Wulff, Doug Markant, Timothy J. Pleskac, and Ralph Hertwig

When people make decisions from experience, they explore the options by sampling pos-
sible outcomes from each alternative. According to the Choice from Accumulated Samples
of Experience model (CHASE), they subjectively evaluate these observations and accumu-
late these valuations, thereby forming a preference. They stop exploring based on either
a predetermined level of preference or sample size and choose accordingly. We sketch the
formal model here.

Search

In the standard sampling paradigm, participants decide how to explore by choosing one
of the two options to generate an outcome. We summarize the search strategy in terms of
the probabilities of sampling from each option, sH and sL = 1 − sH . A simple strategy is
that people divide their exploration equally between the two options (sH = sL = .5), which
is consistent with the overall search behavior in the experiments described in Chapter 7.
However, it is straightforward to model other strategies where search is guided by other
factors like a particular option or the variance of the lottery.

Subjective evaluation

Each outcome is mapped to a utility of the outcome. We use a similar function from
cumulative prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992;
Wakker, 2010) to parameterize the function

u(x) = xα, x > 0

u(x) = −λ|x|α, x ≤ 0.
(S7.1)

The parameter α determines the curvature of the utility function for both gains and
losses, while λ determines the degree of loss aversion.
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Accumulation

The outcome observed on draw t gives rise to a subjective valence, v(t):

v(t) = ω[x(t)]× u[x(t)], if H is sampled,

v(t) = −ω[x(t)]× u[x(t)], if L is sampled.
(S7.2)

Positive valence indicates that an outcome was evaluated as favoring option H; negative
valence indicates favorability of option L. The term ω[x(t)] represents the weight given to
each sampled outcome. We specify these weights next. The valence v(t) then updates an
evolving preference state P , which is a discrete-time, continuous-state stochastic process:

P (t) = P (t− 1) + v(t). (S7.3)

Attention weights

Typically, we might assume that each outcome receives an equal weight in the accu-
mulation process, ω[x(t)] = 1. However, we allow the weight an outcome receives to vary
based on its likelihood and its favorability relative to the other possible outcomes in the
gamble. This is accomplished by making the weight for each sampled outcome a function
of its (de)cumulative rank in the gamble for gains, r(x) = P (X ≥ x), and cumulative rank
in the gamble for losses, r(x) = P (X ≤ x). This assumption is equivalent to the one made
to determine probability weights in cumulative prospect theory. In fact, we use the same
nonlinear weighting function W to determine the sample weights so that

ω(x) =
W [r(x)]−W [r(y)]

r(x)− r(y)
, (S7.4)

where y is the other outcome from the gamble such that y > x and for y, ω(y) =
W [r(y)]/r(y). The astute reader will note that ω(x) is approximately equal to the derivative
of the probability weighting function. Figure S7.1 illustrates the properties of this function
as well as the corresponding probability weighting function. It can be shown that prefer-
ences from CHASE will in the limit (as t → ∞) mimic preferences from rank-dependent
expected utility models like cumulative prospect theory (Pleskac et al., 2019; Zeigenfuse et
al., 2014).

Starting point

The initial preference state P (0) captures any bias people may have towards either
option upon presentation of the choice options. The data we consider do not have any
strong a priori reasons to expect a bias in the initial preference state. However, we allow
for variability to enter the process here as well such as due to incidental trial-order effects.
We model this variability by assuming the initial preference state is distributed according
to a truncated Laplace distribution that is centered at 0, indicating no bias towards either
option. The spread of the distribution is controlled by a free parameter τ that controls how
peaked the distribution is over the center.
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Figure S7.1. Properties of the sample weights and their relation to probability weights. The top row
illustrates possible sample weights. Typically, each sample might be equally weighted with a value of
1. In CHASE, the sample weight of an outcome is a function of its decumulative (gains)/cumulative
(losses) rank. The first horizontal axis denotes the rank r, and the second horizontal axis identifies
the corresponding value x. The top left panel illustrates how the sample weights show differential
sensitivity to either extreme or intermediate events. The top right panel illustrates how the sample
weights show differential sensitivity to either high magnitudes or low magnitudes. The bottom row
shows the corresponding probability weights such that in the limit choices with a given sample weight
would appear to have the corresponding probability weighting function.

Stopping rule

Under optional stopping, a decision is made when the preference state passes a threshold
for one of the choice options. This threshold is set by a respondent and determines the
preference magnitude necessary to terminate sampling and choose an option. The H option
is chosen when the preference passes the threshold θ so that

Choose H if P (s) ≥ θ.
Choose L if P (s) ≤ −θ.
Otherwise continue sampling.

(S7.5)
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